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Bartumeus et al. �Phys. Rev. Lett. 88, 097901 �2002�� compared the efficiency of a Lévy random walk
predator strategy with a Brownian random walk strategy in a periodic one-dimensional domain with nonrevis-
itable moving targets. Their findings from numerical simulations conclude that “a Lévy search strategy is the
best option in some, but not all, cases for a random search process.” Using the same methodology, we show
that the simplest random search strategy of all, ballistic motion in a random direction, outperforms a Lévy
strategy in almost every case. We further show that, in the small set of cases where the ballistic strategy is not
optimal, the periodic model does not capture the more realistic nonperiodic case. In the nonperiodic case, the
ballistic strategy again outperforms the Lévy strategy.
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Interest in optimal foraging is high. The performance of
Lévy random walks �i.e., walks with step lengths xj drawn
from a power-law distribution P�xj��xj

−� with 1���3�
relative to that of other movement strategies has received a
large amount of interest �1–10�. Some observational evi-
dence that points to the existence of Lévy walks in nature
�11� has been overturned �12�, while other evidence remains
compelling �13,14�. There is a large body of theoretical work
that points to Lévy walks with an exponent of 2 as being the
solution to certain optimal foraging problems �1–4,15,16�. In
particular, it has been shown that, under certain conditions,
the optimal Lévy random walk exponent for scenarios with
revisitable stationary targets is approximately 2 �4�. For sce-
narios with nonrevisitable stationary targets, decreasing the
exponent always increases search efficiency, and hence the
optimal strategy, as the exponent tends to 1, is ballistic mo-
tion �3,4,15–17�.

There have also been some studies of scenarios with mov-
ing targets �1,2,18�. Bartumeus et al. �1� showed that, for
nonrevisitable moving targets, a Lévy search strategy �with
an exponent of �=2� outperforms a Brownian search strat-
egy �with an exponent of �=3�. While this is true, Bar-
tumeus et al. �1� did not consider any other values of the
exponent other that �=2 and �=3. In this study, we show
that, similar to the scenario with nonrevisitable stationary
targets �see Ref. �15��, decreasing the exponent � always
increases search efficiency, and hence the optimal strategy is
ballistic motion. Our findings complement those of Faustino
et al. �18�, although they considered a different type of
movement strategy that did not include true ballistic motion
�this is discussed in more detail later�.

To model the scenario of a single predator searching for
many targets moving in one dimension, Bartumeus et al.
�1,2� construct a limiting generalized predator-target simula-
tion model of a single searcher and a single moving target in
a one-dimensional periodic interval of length L. The predator
and target move with constant speeds vp and vt, respectively,
and the ratio of speeds is denoted by v=vt /vp. Step lengths

xj are chosen from a power-law distribution P�xj��xj
−�, with

xj � �xmin,��, and each step is in a random direction, either
left or right. If ��3 the movement process is a Brownian
random walk. If ��3, the distribution of step lengths is
heavy tailed and this is termed a Lévy random walk �15,19�.
The limiting case of the random walk process as �→1 ��
=1 is not a probability distribution� is ballistic motion,
whereby the individual moves in a straight line in a ran-
domly chosen direction �15�. Note that the ballistic motion
process still contains a stochastic element as the direction is
chosen at random. The efficiency of the predator’s walk is
defined as the mean number of encounters per unit distance
moved. The predator and target are each given a size �i.e.,
radius� rp and rt, respectively, and an encounter is registered
whenever the predator and target come within a distance
equal to the sum of their two radii. When an encounter oc-
curs, the predator moves toward the target �a distance of their
combined radii� and the target is destroyed. A new target is
then created at a random location �with the constraint that the
initial distance between target and predator must be greater
than rp+rt�, and the search process restarts. In each simula-
tion, the predator travels a total distance L, which is suffi-
ciently large in comparison to L to provide good statistics. As
the searcher has no knowledge of the target’s position or
velocity �i.e., it cannot “see”� the immediate search strategy
is not obvious. The special case where the searcher always
starts very close to a nonmoving target is similar to that
analyzed by Viswanathan et al. �4� for which it was found
that a Lévy strategy was more efficient than both Brownian
and ballistic strategies.

Bartumeus et al. �1� compare the efficiency of a Lévy
predator �defined as having �p=2� with that of a Brownian
predator �defined as having �p=3�, searching for either a
Lévy target ��t=2� or a Brownian target ��t=3�. In nearly
all cases, the efficiency of the Lévy predator is greater than
or equal to that of the Brownian predator. The increased
efficiency of the Lévy predator is more marked for large
system size L, small speed ratio v, and small size ratio rt /rp.
Their results do not show the actual efficiencies, only the
ratio of the two efficiencies when �p=2 and �p=3.*a.james@math.canterbury.ac.nz
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We replicate these results and also look at movement
strategies, for both the predator and the target, with other
values of � in the range 1���3. The predator and target
radii are here assumed to be zero �the effect of introducing
nonzero radii is discussed below�. Figure 1 shows the preda-
tor’s efficiency against �p for a speed ratio of v=0.2, i.e., a
fast predator, and three different types of target: Brownian
��t=3�, Lévy ��t=2�, and ballistic ��t→1�. It is clear that,
although a predator strategy of �p=2 has higher efficiency
than �p=3, these are just two arbitrary points in a con-
tinuum, and decreasing �p toward 1 further increases effi-
ciency. This agrees with the results of Refs. �3,15�, which
show that a ballistic strategy is optimal in the case of de-
structive foraging and stationary targets.

We now compare the performance of the ballistic predator
strategy to that of the Lévy and Brownian strategies studied
by Ref. �1� for a range of speed ratios v. Figure 2 shows the
efficiencies of the three predator strategies for �a� ballistic
targets ��t→1�, �b� Lévy targets ��t=2�, and �c� Brownian
targets ��p=3�. In the case where both predator and target

are ballistic, the mean efficiency � predicted by the model
can be found analytically using a simple geometrical ap-
proach:

� = �2�1 − v2�/L , v � 1,

�2�v2 − 1��/�Lv� , v � 1.
�

The results in Figs. 2�b� and 2�c� agree with those of Ref.
�1�: the Lévy predator outperforms the Brownian predator,
and its relative advantage is greater for smaller values of v.
However, it is clear that, in almost all cases, the ballistic
strategy �not considered by Ref. �1�� outperforms both the
Lévy and Brownian strategies. The only case where the bal-
listic strategy is less efficient than either of the other two is
when the targets are ballistic and v�1 �i.e., the predator and
target have approximately the same speed�. In this case, there
is a 50% chance that the two individuals will set off in the
same direction and never encounter one another. Hence the
efficiency is very low. However, the conclusion that, in this
case, a Brownian or Lévy strategy is more efficient is only
applicable to the one-dimensional periodic model.

Figure 3 shows the results of two extended models with
many targets moving independently on the real line. These
extended models are a more realistic approximation of a
higher-dimensional scenario. In Fig. 3�a�, the targets are ini-
tially evenly spaced at x= �2n−1�L /2 for integer values of n.
In Fig. 3�b�, the targets are placed randomly �i.e., x
�uniform�−kL ,kL��, and the average density of targets is the
same as in case �a�. In both cases, the predator is initially at
x=0 and all targets move ballistically, with speed vt, in a
direction �left or right� chosen randomly and independently
of the other targets. In case �a�, the predicted mean efficiency
� of a ballistic predator is

� = 	
2�v + 1�

L�3 − 2	�
, v � 1,

2�v + 1��	2 − 1�
L�3	2 − 2	 − 3�

, v � 1,

with 	=2v/�v−1�. In case �b�, following the methodology de-
veloped for the analogous problem in two dimensions by
Koopman �20� and in three dimensions by Gerritsen and
Strickler �21�, the predicted mean efficiency of a ballistic
predator is simply
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FIG. 1. The mean efficiency for a range of predator exponents
�p, and for three different target strategies �ballistic, Lévy, Brown-
ian�. Random walks with ��1 were carried out by drawing step
lengths xj from a power-law distribution; random walks with �=1
were carried out by assuming the step length is infinite, so move-
ment is in a straight line. As expected, as �p→1, the mean effi-
ciency tends toward the value predicted by simulating ballistic mo-
tion �open circles�. Other parameter values are L=100, vp=100,
vt=20, rp=rt=0, xmin=1, L=106.
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FIG. 2. The mean efficiency of the three different predator strategies �ballistic, Lévy, Brownian� for three different target strategies
�ballistic, Lévy, Brownian� for a range of speed ratios. Each step is randomly chosen to be left or right. Other parameter values: L=100,
vp=100, rp=rt=0, xmin=1, L=106. �a� Ballistic target, �t→1, �b� Lévy target, �t=2, �c� Brownian target, �t=3.
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� = �1/L , v � 1,

v/L , v � 1.
�

Figure 3 shows that, again, the ballistic predator is more
efficient than either a Lévy or Brownian predator, and the
advantage of the Lévy strategy shown in Fig. 2�a� is an arti-
fact of choosing a periodic model.

It should be noted that Faustino et al. �18� conducted a
similar study, comparing the encounter rate of predators and
targets undergoing random walks with a range of values of
�, in a similar one-dimensional, periodic domain. The criti-
cal difference between the two models is that the random
walks considered by Ref. �18� do not have step lengths
drawn from a pure power-law distribution, but rather from a
truncated power law distribution with a maximum step
length of L /2. As such, the step length distribution used is
not heavy tailed and random walks with �=1 do not corre-
spond to ballistic motion. The model of Ref. �18� therefore
differs from that considered here and in Ref. �1�. In particu-
lar, Faustino et al. �18� restrict their study to the case v=1,
and find that �p=1 from the truncated power-law distribution
is optimal for all values of �t. In our model, the case v=1
leads to a breakdown of the periodic model, particularly
when the predator and target are moving ballistically. �The
model of Ref. �18� does not break down in this way because
neither predator nor target is moving ballistically.� Neverthe-
less, in our extended nonperiodic model, the ballistic strategy
has the same efficiency as the optimal truncated Lévy strat-
egy of Ref. �18� when v�1, and outperforms this strategy
when v�1.

The reason for the superior efficiency of the simple bal-
listic strategy is that, in this type of scenario, where the
predator has no knowledge of the target’s position, the opti-
mal strategy is usually to cover as much ground as possible.
Any strategy, such as a Lévy, truncated Lévy, or Brownian
random walk, that involves revisiting previously searched
ground is likely to be less efficient �16�. The improved effi-
ciency of the Lévy strategy at �p=2 is not a property of the
Lévy walk per se, but simply a consequence of more fre-
quent long steps and hence less backtracking than Brownian
motion. Reducing �p toward the ballistic case ��p→1� gives

further improvements in efficiency �as seen in Fig. 1�. These
results have been explored numerically for a range of values
of L, L, and xmin and hold for all parameter values tested.

Bartumeus et al. �1,2� also investigate the dependence of
the efficiencies on the sizes of the predator and target. Bar-
tumeus et al. �2� concludes that size and velocity ratios are
equally important to define the optimal search strategy for
Brownian targets and when searching for Lévy targets veloc-
ity ratios become more important. However, the work only
discusses the ratio rt /rp of the target radius to the predator
radius, rather than their absolute values rt and rp. This ap-
proach is flawed because it is their combined value rp+rt
relative to the system size L that determines the effective
target density, and hence the efficiency. Figure 4 illustrates
this point by showing the efficiency of a Lévy predator with
a Lévy target for a range of values of rp and rt �the efficien-
cies of the other predator-target combinations follow the
same pattern�. It is clear that varying the ratio of the radii
while keeping the sum fixed does not change the efficiency.
From this, we deduce that the simulations of Ref. �1� not
only varied the ratio of the radii, but also another parameter,
possibly the sum of the radii, and it is the effect of the latter
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FIG. 3. The mean efficiency of three different predator strategies �ballistic, Lévy, Brownian� with many independent ballistic targets: �a�
targets are initially evenly spaced; �b� targets are initially randomly distributed. Other parameter values L=100, vp=100, rp=rt=0, xmin

=1, L=106.
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OPTIMIZING THE ENCOUNTER RATE IN BIOLOGICAL… PHYSICAL REVIEW E 78, 051128 �2008�

051128-3



that is being observed. A simple geometrical approach shows
that, in a system of size L and with predator and target radii
of rp and rt, respectively, the mean efficiency ��L ,rp ,rt� is
given by

��L,rp,rt� =
�„L�1 − R�,0,0…

1 + R/2
,

where R=2�rp+rt� /L is the fraction of the system that is
occupied by either predator or target �this relationship has
been checked numerically for a range of values of rp and rt�.
Hence, a nonzero value of R simply reduces the effective
system size �and reduces the corresponding efficiency
slightly due to the jump of rp+rt that the predator makes on
finding a target�. The only parameters which have nontrivial
effects on the model results are the exponents �p and �t and
the speed ratio v. It should also be noted that including
predator and target radii is unnecessary in a one-dimensional
system: it is only necessary in higher dimensions, where the
probability of two points exactly colliding is zero.

Although there are some theoretical scenarios, notably the
nondestructive foraging scenario of Ref. �15�, where a Lévy
random walk with exponent �p�2 may be a solution to the
optimal foraging problem, the case described here �which is
destructive foraging� is not one of them. Generally, foraging
efficiency increases as the predator’s power-law exponent �p
decreases. This statement is true in the periodic model of
Bartumeus et al. �1,2�, except in the special case where the
targets move ballistically and at approximately the same
speed as the predator. The statement is always true in the
�more realistic� nonperiodic model with many targets. Hence
a Lévy strategy with �p=2 is more efficient that a Brownian
strategy with �p=3, but the optimal strategy is ballistic, i.e.,
to choose a direction at random and continue in that direction
until an encounter occurs.

The one-dimensional periodic model presented here can
be a good approximation to a more realistic higher-
dimensional model. We assert that the optimum predator
search strategy, in an unknown environment, is to cover the
most ground, minimizing backtracking. Hence a ballistic
strategy is the most effective. It is reasonable to expect this
principle to extend to higher-dimensional models. There are
some cases, notably when the predator and target velocities
are similar, for which the one-dimensional periodic model
fails to capture the higher-dimensional world. Extensions
such as those presented in this paper can give more realistic
results in this case.

Finally, it should be remembered that, when a predator is
searching for a moving target and efficiency is defined as the
number of encounters per unit distance traveled by the preda-
tor, the most efficient predator search strategy in this simple
model is to remain stationary, so that the targets will come to
the predator.

APPENDIX: CALCULATION OF EFFICIENCY
IN THE CASE OF MANY EVENLY SPACED

BALLISTIC TARGETS

There are targets initially located at x= �2n−1�L /2 �for
integer values of n�. The targets move ballistically and the

direction of each target is chosen randomly, and indepen-
dently of the other targets. The predator begins at x=0 and
moves ballistically. The direction of the predator is chosen
randomly and independently of the targets, though it can be
assumed, without loss of generality, that the predator always
travels to the right �i.e., in the direction of increasing x�. Let
Ln and Rn denote the distance traveled by the predator before
encountering target n if the target is moving left or moving
right, respectively.

The first case is where the targets are moving more slowly
than the predator �v�1�. In this case, the first target encoun-
tered will always be to the right �i.e., have a positive value of
n�, and will either be the first left-moving target �Ln� or, if the
first k targets are all moving right, the n=1 target �R1�. The
value of k is the largest integer such that Lk�R1. Hence, the
expected distance E�D� traveled by the predator before en-
countering a target is

E�D� = �
n=1

k

PnLn + �
n=k+1

�

PnR1, �A1�

where Pn=2−n is the probability that the first left-moving
target is target n. Simple geometric arguments give the fol-
lowing expressions for Ln, Rn, and k:

Ln =
�2n − 1�L
2�1 + v�

,

Rn =
�2n − 1�L
2�1 − v�

,

k = floor� 1

1 − v
 .

Substituting these expressions into Eq. �A1� and summing
the series gives

E�D� =
�3 − 2�2v−1�/�v−1��

2�v + 1�
L ,

which leads to the expression for efficiency �=1 /E�D� given
in the paper.

The second case is where the targets are faster than the
predator �v�1�. Here, the first target encountered is either
the first target that is initially to the right of the predator �n
�0� and is moving left �Ln�, or the first target that is initially
to the left of the predator �n�0� and is moving right �Rn�.
The expected distance traveled is therefore

E�D� = �
m=0

�

Q−m��
n=1

k�m�

PnLn + �
n=k�m�+1

�

PnR−m , �A2�

where Pn=2−n and Q−m=2−m−1 are, respectively, the prob-
abilities that the first positive left-moving target is target n
and that the first negative right-moving target is target −m.
Here k�m� is the largest integer such that Lk�m��Rm, and is
given by
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k�m� = floor�m�v + 1� + v
v − 1

 .

The expressions for Ln and Rn are as above. Substituting
these into Eq. �A2� and summing the series gives

E�D� =
3�22v/�v−1� − 1� − 2�2v−1�/�v−1�

2�v + 1��22v/�v−1� − 1�
L ,

which leads to the expression for efficiency �=1 /E�D� given
in the paper.
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